Fix RID_Owner synchronization

This commit is contained in:
Pedro J. Estébanez
2024-11-11 18:09:43 +01:00
parent 0f5f3bc954
commit de7e4efef8
2 changed files with 261 additions and 3 deletions

View File

@@ -43,6 +43,40 @@
#include <stdio.h> #include <stdio.h>
#include <typeinfo> #include <typeinfo>
#ifdef SANITIZERS_ENABLED
#ifdef __has_feature
#if __has_feature(thread_sanitizer)
#define TSAN_ENABLED
#endif
#elif defined(__SANITIZE_THREAD__)
#define TSAN_ENABLED
#endif
#endif
#ifdef TSAN_ENABLED
#include <sanitizer/tsan_interface.h>
#endif
// The following macros would need to be implemented somehow
// for purely weakly ordered architectures. There's a test case
// ("[RID_Owner] Thread safety") with potential to catch issues
// on such architectures if these primitives fail to be implemented.
// For now, they will be just markers about needs that may arise.
#define WEAK_MEMORY_ORDER 0
#if WEAK_MEMORY_ORDER
// Ideally, we'd have implementations that collaborate with the
// sync mechanism used (e.g., the mutex) so instead of some full
// memory barriers being issued, some acquire-release on the
// primitive itself. However, these implementations will at least
// provide correctness.
#define SYNC_ACQUIRE std::atomic_thread_fence(std::memory_order_acquire);
#define SYNC_RELEASE std::atomic_thread_fence(std::memory_order_release);
#else
// Compiler barriers are enough in this case.
#define SYNC_ACQUIRE std::atomic_signal_fence(std::memory_order_acquire);
#define SYNC_RELEASE std::atomic_signal_fence(std::memory_order_release);
#endif
class RID_AllocBase { class RID_AllocBase {
static SafeNumeric<uint64_t> base_id; static SafeNumeric<uint64_t> base_id;
@@ -120,7 +154,12 @@ class RID_Alloc : public RID_AllocBase {
free_list_chunks[chunk_count][i] = alloc_count + i; free_list_chunks[chunk_count][i] = alloc_count + i;
} }
max_alloc += elements_in_chunk; if constexpr (THREAD_SAFE) {
// Store atomically to avoid data race with the load in get_or_null().
((std::atomic<uint32_t> *)&max_alloc)->store(max_alloc + elements_in_chunk, std::memory_order_relaxed);
} else {
max_alloc += elements_in_chunk;
}
} }
uint32_t free_index = free_list_chunks[alloc_count / elements_in_chunk][alloc_count % elements_in_chunk]; uint32_t free_index = free_list_chunks[alloc_count / elements_in_chunk][alloc_count % elements_in_chunk];
@@ -168,9 +207,19 @@ public:
return nullptr; return nullptr;
} }
if constexpr (THREAD_SAFE) {
SYNC_ACQUIRE;
}
uint64_t id = p_rid.get_id(); uint64_t id = p_rid.get_id();
uint32_t idx = uint32_t(id & 0xFFFFFFFF); uint32_t idx = uint32_t(id & 0xFFFFFFFF);
if (unlikely(idx >= max_alloc)) { uint32_t ma;
if constexpr (THREAD_SAFE) { // Read atomically to avoid data race with the store in _allocate_rid().
ma = ((std::atomic<uint32_t> *)&max_alloc)->load(std::memory_order_relaxed);
} else {
ma = max_alloc;
}
if (unlikely(idx >= ma)) {
return nullptr; return nullptr;
} }
@@ -179,7 +228,23 @@ public:
uint32_t validator = uint32_t(id >> 32); uint32_t validator = uint32_t(id >> 32);
if constexpr (THREAD_SAFE) {
#ifdef TSAN_ENABLED
__tsan_acquire(&chunks[idx_chunk]); // We know not a race in practice.
__tsan_acquire(&chunks[idx_chunk][idx_element]); // We know not a race in practice.
#endif
}
Chunk &c = chunks[idx_chunk][idx_element]; Chunk &c = chunks[idx_chunk][idx_element];
if constexpr (THREAD_SAFE) {
#ifdef TSAN_ENABLED
__tsan_release(&chunks[idx_chunk]);
__tsan_release(&chunks[idx_chunk][idx_element]);
__tsan_acquire(&c.validator); // We know not a race in practice.
#endif
}
if (unlikely(p_initialize)) { if (unlikely(p_initialize)) {
if (unlikely(!(c.validator & 0x80000000))) { if (unlikely(!(c.validator & 0x80000000))) {
ERR_FAIL_V_MSG(nullptr, "Initializing already initialized RID"); ERR_FAIL_V_MSG(nullptr, "Initializing already initialized RID");
@@ -198,6 +263,12 @@ public:
return nullptr; return nullptr;
} }
if constexpr (THREAD_SAFE) {
#ifdef TSAN_ENABLED
__tsan_release(&c.validator);
#endif
}
T *ptr = &c.data; T *ptr = &c.data;
return ptr; return ptr;
@@ -205,12 +276,41 @@ public:
void initialize_rid(RID p_rid) { void initialize_rid(RID p_rid) {
T *mem = get_or_null(p_rid, true); T *mem = get_or_null(p_rid, true);
ERR_FAIL_NULL(mem); ERR_FAIL_NULL(mem);
if constexpr (THREAD_SAFE) {
#ifdef TSAN_ENABLED
__tsan_acquire(mem); // We know not a race in practice.
#endif
}
memnew_placement(mem, T); memnew_placement(mem, T);
if constexpr (THREAD_SAFE) {
#ifdef TSAN_ENABLED
__tsan_release(mem);
#endif
SYNC_RELEASE;
}
} }
void initialize_rid(RID p_rid, const T &p_value) { void initialize_rid(RID p_rid, const T &p_value) {
T *mem = get_or_null(p_rid, true); T *mem = get_or_null(p_rid, true);
ERR_FAIL_NULL(mem); ERR_FAIL_NULL(mem);
if constexpr (THREAD_SAFE) {
#ifdef TSAN_ENABLED
__tsan_acquire(mem); // We know not a race in practice.
#endif
}
memnew_placement(mem, T(p_value)); memnew_placement(mem, T(p_value));
if constexpr (THREAD_SAFE) {
#ifdef TSAN_ENABLED
__tsan_release(mem);
#endif
SYNC_RELEASE;
}
} }
_FORCE_INLINE_ bool owns(const RID &p_rid) const { _FORCE_INLINE_ bool owns(const RID &p_rid) const {
@@ -329,16 +429,21 @@ public:
chunk_limit = (p_maximum_number_of_elements / elements_in_chunk) + 1; chunk_limit = (p_maximum_number_of_elements / elements_in_chunk) + 1;
chunks = (Chunk **)memalloc(sizeof(Chunk *) * chunk_limit); chunks = (Chunk **)memalloc(sizeof(Chunk *) * chunk_limit);
free_list_chunks = (uint32_t **)memalloc(sizeof(uint32_t *) * chunk_limit); free_list_chunks = (uint32_t **)memalloc(sizeof(uint32_t *) * chunk_limit);
SYNC_RELEASE;
} }
} }
~RID_Alloc() { ~RID_Alloc() {
if constexpr (THREAD_SAFE) {
SYNC_ACQUIRE;
}
if (alloc_count) { if (alloc_count) {
print_error(vformat("ERROR: %d RID allocations of type '%s' were leaked at exit.", print_error(vformat("ERROR: %d RID allocations of type '%s' were leaked at exit.",
alloc_count, description ? description : typeid(T).name())); alloc_count, description ? description : typeid(T).name()));
for (size_t i = 0; i < max_alloc; i++) { for (size_t i = 0; i < max_alloc; i++) {
uint64_t validator = chunks[i / elements_in_chunk][i % elements_in_chunk].validator; uint32_t validator = chunks[i / elements_in_chunk][i % elements_in_chunk].validator;
if (validator & 0x80000000) { if (validator & 0x80000000) {
continue; //uninitialized continue; //uninitialized
} }

View File

@@ -31,10 +31,27 @@
#ifndef TEST_RID_H #ifndef TEST_RID_H
#define TEST_RID_H #define TEST_RID_H
#include "core/os/thread.h"
#include "core/templates/local_vector.h"
#include "core/templates/rid.h" #include "core/templates/rid.h"
#include "core/templates/rid_owner.h"
#include "tests/test_macros.h" #include "tests/test_macros.h"
#ifdef SANITIZERS_ENABLED
#ifdef __has_feature
#if __has_feature(thread_sanitizer)
#define TSAN_ENABLED
#endif
#elif defined(__SANITIZE_THREAD__)
#define TSAN_ENABLED
#endif
#endif
#ifdef TSAN_ENABLED
#include <sanitizer/tsan_interface.h>
#endif
namespace TestRID { namespace TestRID {
TEST_CASE("[RID] Default Constructor") { TEST_CASE("[RID] Default Constructor") {
RID rid; RID rid;
@@ -96,6 +113,142 @@ TEST_CASE("[RID] 'get_local_index'") {
CHECK(RID::from_uint64(4'294'967'295).get_local_index() == 4'294'967'295); CHECK(RID::from_uint64(4'294'967'295).get_local_index() == 4'294'967'295);
CHECK(RID::from_uint64(4'294'967'297).get_local_index() == 1); CHECK(RID::from_uint64(4'294'967'297).get_local_index() == 1);
} }
// This case would let sanitizers realize data races.
// Additionally, on purely weakly ordered architectures, it would detect synchronization issues
// if RID_Alloc failed to impose proper memory ordering and the test's threads are distributed
// among multiple L1 caches.
TEST_CASE("[RID_Owner] Thread safety") {
struct DataHolder {
char data[Thread::CACHE_LINE_BYTES];
};
struct RID_OwnerTester {
uint32_t thread_count = 0;
RID_Owner<DataHolder, true> rid_owner;
TightLocalVector<Thread> threads;
SafeNumeric<uint32_t> next_thread_idx;
// Using std::atomic directly since SafeNumeric doesn't support relaxed ordering.
TightLocalVector<std::atomic<uint64_t>> rids;
std::atomic<uint32_t> sync[2] = {};
std::atomic<uint32_t> correct = 0;
// A barrier that doesn't introduce memory ordering constraints, only compiler ones.
// The idea is not to cause any sync traffic that would make the code we want to test
// seem correct as a side effect.
void lockstep(uint32_t p_step) {
uint32_t buf_idx = p_step % 2;
uint32_t target = (p_step / 2 + 1) * threads.size();
sync[buf_idx].fetch_add(1, std::memory_order_relaxed);
do {
std::this_thread::yield();
} while (sync[buf_idx].load(std::memory_order_relaxed) != target);
}
explicit RID_OwnerTester(bool p_chunk_for_all, bool p_chunks_preallocated) :
thread_count(OS::get_singleton()->get_processor_count()),
rid_owner(sizeof(DataHolder) * (p_chunk_for_all ? thread_count : 1)) {
threads.resize(thread_count);
rids.resize(threads.size());
if (p_chunks_preallocated) {
LocalVector<RID> prealloc_rids;
for (uint32_t i = 0; i < (p_chunk_for_all ? 1 : threads.size()); i++) {
prealloc_rids.push_back(rid_owner.make_rid());
}
for (uint32_t i = 0; i < prealloc_rids.size(); i++) {
rid_owner.free(prealloc_rids[i]);
}
}
}
~RID_OwnerTester() {
for (uint32_t i = 0; i < threads.size(); i++) {
rid_owner.free(RID::from_uint64(rids[i].load(std::memory_order_relaxed)));
}
}
void test() {
for (uint32_t i = 0; i < threads.size(); i++) {
threads[i].start(
[](void *p_data) {
RID_OwnerTester *rot = (RID_OwnerTester *)p_data;
auto _compute_thread_unique_byte = [](uint32_t p_idx) -> char {
return ((p_idx & 0xff) ^ (0b11111110 << (p_idx % 8)));
};
// 1. Each thread gets a zero-based index.
uint32_t self_th_idx = rot->next_thread_idx.postincrement();
rot->lockstep(0);
// 2. Each thread makes a RID holding unique data.
DataHolder initial_data;
memset(&initial_data, _compute_thread_unique_byte(self_th_idx), Thread::CACHE_LINE_BYTES);
RID my_rid = rot->rid_owner.make_rid(initial_data);
rot->rids[self_th_idx].store(my_rid.get_id(), std::memory_order_relaxed);
rot->lockstep(1);
// 3. Each thread verifies all the others.
uint32_t local_correct = 0;
for (uint32_t th_idx = 0; th_idx < rot->threads.size(); th_idx++) {
if (th_idx == self_th_idx) {
continue;
}
char expected_unique_byte = _compute_thread_unique_byte(th_idx);
RID rid = RID::from_uint64(rot->rids[th_idx].load(std::memory_order_relaxed));
DataHolder *data = rot->rid_owner.get_or_null(rid);
#ifdef TSAN_ENABLED
__tsan_acquire(data); // We know not a race in practice.
#endif
bool ok = true;
for (uint32_t j = 0; j < Thread::CACHE_LINE_BYTES; j++) {
if (data->data[j] != expected_unique_byte) {
ok = false;
break;
}
}
if (ok) {
local_correct++;
}
#ifdef TSAN_ENABLED
__tsan_release(data);
#endif
}
rot->lockstep(2);
rot->correct.fetch_add(local_correct, std::memory_order_acq_rel);
},
this);
}
for (uint32_t i = 0; i < threads.size(); i++) {
threads[i].wait_to_finish();
}
CHECK_EQ(correct.load(), threads.size() * (threads.size() - 1));
}
};
SUBCASE("All items in one chunk, pre-allocated") {
RID_OwnerTester tester(true, true);
tester.test();
}
SUBCASE("All items in one chunk, NOT pre-allocated") {
RID_OwnerTester tester(true, false);
tester.test();
}
SUBCASE("One item per chunk, pre-allocated") {
RID_OwnerTester tester(false, true);
tester.test();
}
SUBCASE("One item per chunk, NOT pre-allocated") {
RID_OwnerTester tester(false, false);
tester.test();
}
}
} // namespace TestRID } // namespace TestRID
#endif // TEST_RID_H #endif // TEST_RID_H